How To Calculate Glidande Medelvärde In Prognoser


Flyttande medelprognos Inledning. Som du kan gissa vi tittar på några av de mest primitiva metoderna för prognoser. Men förhoppningsvis är dessa åtminstone en värdefull introduktion till några av de datorproblem som är relaterade till att implementera prognoser i kalkylblad. I den här venen fortsätter vi med att börja i början och börja arbeta med Moving Average prognoser. Flyttande medelprognoser. Alla är bekanta med att flytta genomsnittliga prognoser oavsett om de tror att de är. Alla studenter gör dem hela tiden. Tänk på dina testresultat i en kurs där du kommer att ha fyra tester under semestern. Låt oss anta att du fick en 85 på ditt första test. Vad skulle du förutse för ditt andra testresultat Vad tycker du att din lärare skulle förutsäga för nästa testresultat Vad tycker du att dina vänner kan förutsäga för nästa testresultat Vad tror du att dina föräldrar kan förutsäga för nästa testresultat Oavsett om Alla blabbing du kan göra för dina vänner och föräldrar, de och din lärare är mycket troliga att du förväntar dig att få något i området 85 du bara fick. Nåväl, nu kan vi anta att trots din självbefrämjande till dina vänner överskattar du dig själv och räknar att du kan studera mindre för det andra testet och så får du en 73. Nu vad är alla berörda och oroade att Förutse att du kommer att få på ditt tredje test Det finns två mycket troliga metoder för dem att utveckla en uppskattning oavsett om de kommer att dela den med dig. De kan säga till sig själva: "Den här killen sprider alltid rök om hans smarts. Hes kommer att få ytterligare 73 om han är lycklig. Kanske kommer föräldrarna att försöka vara mer stödjande och säga, Quote, hittills har du fått en 85 och en 73, så kanske du ska räkna med att få en (85 73) 2 79. Jag vet inte, kanske om du gjorde mindre fester Och werent vaggar vassan överallt och om du började göra mycket mer studerar kan du få en högre poäng. quot Båda dessa uppskattningar flyttar faktiskt genomsnittliga prognoser. Den första använder endast din senaste poäng för att förutse din framtida prestanda. Detta kallas en rörlig genomsnittlig prognos med en period av data. Den andra är också en rörlig genomsnittlig prognos men använder två dataperioder. Låt oss anta att alla dessa människor bråkar på ditt stora sinne, har gissat dig och du bestämmer dig för att göra det bra på det tredje testet av dina egna skäl och att lägga en högre poäng framför din quotalliesquot. Du tar testet och din poäng är faktiskt en 89 Alla, inklusive dig själv, är imponerade. Så nu har du det sista testet av terminen som kommer upp och som vanligt känner du behovet av att ge alla till att göra sina förutsägelser om hur du ska göra på det sista testet. Jo, förhoppningsvis ser du mönstret. Nu kan du förhoppningsvis se mönstret. Vilken tror du är den mest exakta visselpipan medan vi arbetar. Nu återvänder vi till vårt nya rengöringsföretag påbörjat av din främmande halvsyster kallad Whistle While We Work. Du har några tidigare försäljningsdata som representeras av följande avsnitt från ett kalkylblad. Vi presenterar först data för en treårs glidande medelprognos. Posten för cell C6 ska vara Nu kan du kopiera den här cellformeln ner till de andra cellerna C7 till och med C11. Lägg märke till hur genomsnittet rör sig över de senaste historiska data men använder exakt de tre senaste perioderna som finns tillgängliga för varje förutsägelse. Du bör också märka att vi inte verkligen behöver göra förutsägelser för de senaste perioderna för att utveckla vår senaste förutsägelse. Detta är definitivt annorlunda än exponentiell utjämningsmodell. Ive inkluderade quotpast predictionsquot eftersom vi kommer att använda dem på nästa webbsida för att mäta förutsägelse validitet. Nu vill jag presentera de analoga resultaten för en tvåårs glidande medelprognos. Posten för cell C5 ska vara Nu kan du kopiera den här cellformeln ner till de andra cellerna C6 till och med C11. Observera hur nu endast de två senaste bitarna av historiska data används för varje förutsägelse. Återigen har jag inkluderat quotpast predictionsquot för illustrativa ändamål och för senare användning i prognosvalidering. Några andra saker som är viktiga att märka. För en m-period som rör genomsnittlig prognos används endast de senaste datavärdena för att göra förutsägelsen. Inget annat är nödvändigt. För en m-period som rör en genomsnittlig prognos, observera att den första förutsägelsen sker i period m 1. Båda dessa problem kommer att vara väldigt signifikanta när vi utvecklar vår kod. Utveckla den rörliga genomsnittsfunktionen. Nu behöver vi utveckla koden för den glidande genomsnittliga prognosen som kan användas mer flexibelt. Koden följer. Observera att inmatningarna är för antalet perioder du vill använda i prognosen och en rad historiska värden. Du kan lagra den i vilken arbetsbok du vill ha. Funktion MovingAverage (Historical, NumberOfPeriods) Som enstaka deklarering och initialisering av variabler Dim-objekt som variant Dim-räknare som integer Dim-ackumulering som enstaka Dim HistoricalSize som heltal Initialiserande variabler Counter 1 ackumulering 0 Bestämning av storleken på Historisk matris Historisk storlek Historisk. Count för Counter 1 till NumberOfPeriods Ackumulera lämpligt antal senast tidigare observerade värden ackumulering ackumulering historisk (HistoricalSize - NumberOfPeriods Counter) MovingAverage Accumulation NumberOfPeriods Koden förklaras i klassen. Du vill placera funktionen på kalkylbladet så att resultatet av beräkningen visas där den ska gilla följande. Rörelsemedeltal: Vad det är och hur man beräknar det Se på videon eller läs artikeln nedan: Ett glidande medelvärde är en teknik För att få en övergripande uppfattning om trenderna i en dataset är det ett medelvärde av alla delar av siffror. Det rörliga genomsnittet är extremt användbart för att förutse långsiktiga trender. Du kan beräkna den under en viss tid. Om du till exempel har försäljningsdata för en tjugoårsperiod kan du beräkna ett femårigt glidande medelvärde, ett fyrårigt glidande medelvärde, ett treårigt glidande medelvärde och så vidare. Aktiemarknadsanalytiker brukar använda ett 50 eller 200 dagars glidande medelvärde för att hjälpa dem att se trender på aktiemarknaden och (förhoppningsvis) prognostisera var aktierna är på väg. Ett medelvärde representerar värdet 8220middling8221 av en uppsättning tal. Det rörliga genomsnittet är exakt detsamma, men genomsnittet beräknas flera gånger för flera delsatser av data. Om du till exempel vill ha ett tvåårigt glidande medelvärde för en dataset från 2000, 2001, 2002 och 2003, skulle du hitta medelvärden för delmängden 20002001, 20012002 och 20022003. Flyttvärdena brukar avbildas och visas bäst. Beräkning av ett femårigt rörligt medelvärde Exempel Exempelproblem: Beräkna ett femårigt glidande medelvärde från följande datamängd: (4M 6M 5M 8M 9M) ​​5 6,4M Genomsnittlig försäljning för den andra delmängden om fem år (2004 8211 2008). Centrerad runt 2006, är 6,6M: (6M 5M 8M 9M 5M) 5 6,6M Den genomsnittliga försäljningen för den tredje delmängden på fem år (2005 8211 2009). Centrerad runt 2007, är 6,6M: (5M 8M 9M 5M 4M) 5 6,2M Fortsätt att beräkna varje femårs medelvärde tills du når slutet av uppsättningen (2009-2013). Detta ger dig en serie punkter (medelvärden) som du kan använda för att plotta ett diagram över glidande medelvärden. I följande Excel-tabell visas de glidande medelvärdena beräknade för 2003-2012 tillsammans med ett spridningsdiagram av data: Titta på videon eller läs stegen nedan: Excel har ett kraftfullt tillägg, Data Analysis Toolpak (hur man laddar data Analysis Toolpak) som ger dig många extra alternativ, inklusive en automatiserad glidande medelfunktion. Funktionen beräknar inte bara det glidande medlet för dig, det grafar också de ursprungliga uppgifterna samtidigt. Vilket sparar dig en hel del tangenttryckningar. Excel 2013: Steg Steg 1: Klicka på fliken 8220Data8221 och klicka sedan på 8220Data Analysis.8221 Steg 2: Klicka på 8220Göra genomsnittet8221 och klicka sedan på 8220OK.8221 Steg 3: Klicka på rutan 8220Input Range8221 och välj sedan dina data. Om du inkluderar kolumnrubriker, se till att du markerar etiketterna i första raden. Steg 4: Skriv ett intervall i lådan. Ett intervall är hur många tidigare poäng du vill att Excel ska använda för att beräkna det rörliga genomsnittet. Till exempel skulle 822058221 använda de tidigare 5 datapunkterna för att beräkna medelvärdet för varje efterföljande punkt. Ju lägre intervall desto närmare ditt glidande medelvärde är i din ursprungliga dataset. Steg 5: Klicka i rutan 8220Output Range8221 och välj ett område på arbetsbladet där du vill att resultatet ska visas. Eller klicka på 8220New-kalkylbladet8221-knappen. Steg 6: Markera rutan 8220Chart Output8221 om du vill se ett diagram över din dataset (om du glömmer att göra det kan du alltid gå tillbaka och lägga till det eller välja ett diagram från fliken 8220Insert8221.8221 Steg 7: Tryck på 8220OK .8221 Excel kommer att returnera resultaten i det område du angav i steg 6. Titta på videon eller läs stegen nedan: Provproblem: Beräkna treårigt glidande medelvärde i Excel för följande försäljningsdata: 2003 (33M), 2004 (22M), 2005 (36M), 2006 (34M), 2007 (43M), 2008 (39M), 2009 (41M), 2010 (36M), 2011 (45M), 2012 (56M), 2013 (64M). 1: Skriv in data i två kolumner i Excel. Den första kolumnen ska ha år och andra kolumnen kvantitativa data (i det här exemplet problemet, försäljnings siffrorna). Se till att det inte finns några tomma rader i din celldata. : Beräkna det första treårsgenomsnittet (2003-2005) för data. För det här provproblemet, skriv 8220 (B2B3B4) 38221 i cell D3. Beräkna det första genomsnittet. Steg 3: Dra kvadraten längst ner till höger d Äger att flytta formeln till alla celler i kolumnen. Detta beräknar medelvärden för efterföljande år (t ex 2004-2006, 2005-2007). Dra formeln. Steg 4: (Valfritt) Skapa en graf. Välj alla data i arbetsbladet. Klicka på fliken 8220Insert8221, klicka sedan på 8220Scatter, 8221 och klicka sedan på 8220Scatter med släta linjer och markörer.8221 Ett diagram över ditt glidande medel visas på arbetsbladet. Kolla in vår YouTube-kanal för mer statistiks hjälp och tips. Flyttande medelvärde: Vad det är och hur man beräknar det var senast ändrat: 8 januari 2016 av Andale 22 tankar om ldquo Flyttande medelvärde: Vad det är och hur man beräknar det rdquo Detta är Perfekt och enkelt att assimilera. Tack för arbetet Detta är mycket tydligt och informativt. Fråga: Hur räknar man med ett 4-årigt glidande medelvärde Vilket år skulle det 4-åriga glidande medelcentrumet på It centrera sig i slutet av det andra året (dvs. 31 december). Kan jag använda dig av medelinkomst för att prognostisera framtida intäkter som någon vet om centrerad medel, snälla berätta om någon vet. Här anges det att vi måste överväga 5 år för att få det medelvärde som ligger i centrum. Vad är då om resten år om vi vill få medelvärdet av 20118230 så har vi inga ytterligare värden efter 2012, hur skulle vi då beräkna det? Som du Don8217t har mer info det skulle vara omöjligt att beräkna 5 år MA för 2011. Du kan få ett tvåårigt glidande medel men. Hej Tack för videon. En sak är emellertid oklart. Hur man gör en prognos för de kommande månaderna Videon visar prognosen för månaderna för vilka data redan är tillgängliga. Hej, Råmaterial, I8217m arbetar med att utöka artikeln för att inkludera prognoser. Processen är lite mer komplicerad än att använda tidigare data. Ta en titt på denna Duke University artikel, som förklarar det i djupet. Hälsningar, Stephanie tack för en tydlig förklaring. Hej Det gick inte att hitta länken till den föreslagna Duke University-artikeln. Begär att lägga länken igenA Prognosberäkningsexempel A.1 Prognosberäkningsmetoder Tolv metoder för beräkning av prognoser är tillgängliga. De flesta av dessa metoder ger begränsad användarkontroll. Till exempel kan vikten på senaste historiska data eller datumintervallet för historiska data som används i beräkningarna anges. Följande exempel visar beräkningsförfarandet för var och en av de tillgängliga prognosmetoderna, med en identisk uppsättning historiska data. Följande exempel använder samma försäljningsdata 2004 och 2005 för att producera en 2006-prognos för försäljning. Utöver prognosberäkningen innehåller varje exempel en simulerad 2005-prognos för en tre månaders hållbarhetsperiod (bearbetningsalternativ 19 3) som sedan används för procent av noggrannhet och genomsnittliga absoluta avvikelsesberäkningar (faktisk försäljning jämfört med simulerad prognos). A.2 Prognos Prestationsutvärderingskriterier Beroende på ditt val av bearbetningsalternativ och de trender och mönster som finns i försäljningsdata, kommer vissa prognosmetoder att fungera bättre än andra för en viss historisk dataset. En prognosmetod som är lämplig för en produkt kanske inte är lämplig för en annan produkt. Det är också osannolikt att en prognostiseringsmetod som ger goda resultat i ett skede av en livscykel för produkterna kommer att vara lämpligt under hela livscykeln. Du kan välja mellan två metoder för att utvärdera nuvarande prestanda för prognosmetoderna. Dessa är genomsnittlig absolut avvikelse (MAD) och procent av noggrannhet (POA). Båda dessa prestationsbedömningsmetoder kräver historiska försäljningsdata för en användarens specificerade tidsperiod. Denna tidsperiod kallas en uthållningsperiod eller perioder som passar bäst (PBF). Uppgifterna under denna period används som utgångspunkt för att rekommendera vilken av prognosmetoderna som ska användas vid nästa prognosprojektion. Denna rekommendation är specifik för varje produkt och kan ändras från en prognosproduktion till nästa. De två prognosutvärderingsmetoderna visas på sidorna efter exempel på de tolv prognosmetoderna. A.3 Metod 1 - Specificerad procentsats under förra året Denna metod multiplicerar försäljningsdata från föregående år med en användardefinierad faktor till exempel 1,10 för en 10 ökning, eller 0,97 för en 3 minskning. Erforderlig försäljningshistorik: Ett år för beräkning av prognosen plus användarens specificerade antal tidsperioder för utvärdering av prognosprestanda (bearbetningsalternativ 19). A.4.1 Beräkning Beräkningsområde Försäljningshistorik som ska användas vid beräkning av tillväxtfaktor (behandlingsalternativ 2a) 3 i detta exempel. Summa de sista tre månaderna 2005: 114 119 137 370 Summa samma tre månader för föregående år: 123 139 133 395 Den beräknade faktorn 370395 0,9367 Beräkna prognoserna: januari 2005 försäljning 128 0,9367 119,8036 eller cirka 120 februari 2005 försäljning 117 0,9367 109,5939 eller cirka 110 mars 2005 försäljning 115 0,9367 107,7205 eller cirka 108 A.4.2 Simulerad prognosberäkning Summan av tre månaderna 2005 före uthållningsperioden (juli, augusti, september): 129 140 131 400 Summa samma tre månader för Föregående år: 141 128 118 387 Den beräknade faktorn 400387 1.033591731 Beräkna simulerad prognos: oktober 2004 försäljning 123 1.033591731 127.13178 november 2004 försäljning 139 1.033591731 143.66925 december 2004 försäljning 133 1.033591731 137.4677 A.4.3 Procent av beräkningsberäkning POA (127.13178 143.66925 137.4677) (114 119 137) 100 408,26873 370 100 110,3429 A.4.4 Genomsnittlig Absolut Avvikelse Beräkning MAD (127,13178 - 114 143,66925 - 119 137,4677-137) 3 (13.13178 24.66925 0.4677) 3 12.75624 A.5 Metod 3 - Förra året till det här året Denna metod kopierar försäljningsdata från föregående år till nästa år. Erforderlig försäljningshistoria: Ett år för beräkning av prognosen plus antal tidsperioder som anges för utvärdering av prognosprestanda (bearbetningsalternativ 19). A.6.1 Beräkning av prognos Antal perioder som ska ingå i genomsnittet (bearbetningsalternativ 4a) 3 i detta exempel För varje månad av prognosen, genomsnitt de föregående tre månaderna data. Januari prognos: 114 119 137 370, 370 3 123 333 eller 123 februari prognos: 119 137 123 379, 379 3 126 333 eller 126 mars prognos: 137 123 126 379, 386 3 128 677 eller 129 A.6.2 Simulerad prognosberäkning Oktober 2005 försäljning 140 131) 3 133 33333 Försäljning i november 2005 (140 131 114) 3 128 33333 Försäljning i december 2005 (131 114 119) 3 121 33333 A.6.3 Procent av beräkningsberäkning POA (133.3333 128.3333 121.3333) (114 119 137) 100 103.513 A.6.4 Medel Absolut Avvikelse Beräkning MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14.7777 A.7 Metod 5 - Linjär approximation Linjär approximation beräknar en trend baserad på två försäljningshistorik datapunkter. Dessa två punkter definierar en rak trendlinje som projiceras in i framtiden. Använd denna metod med försiktighet, eftersom långdistansprognoser utnyttjas av små förändringar på bara två datapunkter. Erforderlig försäljningshistorik: Antalet perioder som ska inkluderas i regression (behandlingsalternativ 5a) plus 1 plus antal tidsperioder för utvärdering av prognosprestanda (behandlingsalternativ 19). A.8.1 Beräkning av prognos Antal perioder som ska inkluderas i regression (behandlingsalternativ 6a) 3 i det här exemplet För varje månad av prognosen, lägg till ökningen eller minskningen under de angivna perioderna före hållbarhetsperioden föregående period. Genomsnittet för de föregående tre månaderna (114 119 137) 3 123 33333 Sammanfattning av de föregående tre månaderna med hänsyn tagen (114 1) (119 2) (137 3) 763 Skillnad mellan värdena 763 - 123 3333 (1 2 3) 23 Förhållande 12 22 32) - 2 3 14 - 12 2 Värde1 SkillnadRatio 232 11,5 Värde2 Genomsnitt - värde1 förhållande 123.3333 - 11.5 2 100.3333 Prognos (1 n) värde1 värde2 4 11.5 100.3333 146.333 eller 146 Prognos 5 11.5 100.3333 157.8333 eller 158 Prognos 6 11.5 100.3333 169.3333 Eller 169 A.8.2 Simulerad prognosberäkning Oktober 2004 Försäljning: Genomsnittet för de föregående tre månaderna (129 140 131) 3 133 3333 Sammanfattning av de föregående tre månaderna med hänsyn till (129 1) (140 2) (131 3) 802 Skillnad mellan Värden 802 - 133.3333 (1 2 3) 2 Förhållande (12 22 32) - 2 3 14 - 12 2 Värde1 DifferenceRatio 22 1 Värde2 Genomsnitt - värde1 förhållande 133.3333 - 1 2 131.3333 Prognos (1 n) värde1 värde2 4 1 131.3333 135.3333 november 2004 försäljning Genomsnittet för de föregående tre månaderna (140 131 114) 3 128 3333 Sammanfattning av de föregående tre månaderna med hänsyn tagen (140 1) (131 2) (114 3) 744 Skillnad mellan värdena 744 - 128 3333 (1 2 3) -25,9999 Värde1 DifferenceRatio -25.99992 -12.9999 Value2 Genomsnitt - värde1 förhållande 128.3333 - (-12.9999) 2 154.3333 Prognos 4 -12.9999 154.3333 102.3333 december 2004 Försäljning Genomsnitt av de föregående tre månaderna (131 114 119) 3 121.3333 Sammanfattning av de föregående tre månaderna med hänsyn till 131 1) (114 2) (119 3) 716 Skillnad mellan värdena 716 - 121.3333 (1 2 3) -11.9999 Värde1 SkillnadRatio -11.99992 -5.9999 Värde2 Genomsnitt - värde1 förhållande 121.3333 - (-5.9999) 2 133.3333 Prognos 4 (-5.9999 ) 133.3333 109.3333 A.8.3 Procent av noggrannhetsberäkning POA (135.33 102.33 109.33) (114 119 137) 100 93.78 A.8.4 Genomsnittlig Absolut Avvikelse Beräkning MAD (135,33 - 114 102,33 - 119 109,33 - 137) 3 21,88 A.9 Metod 7 - Secon D Grad approximation Linjär regression bestämmer värdena för a och b i prognosformeln Y a bX med målet att anpassa en rak linje till försäljningshistorikdata. Andra grader Approximation är liknande. Denna metod bestämmer emellertid värdena för a, b och c i prognosformeln Y a bX cX2 med målet att anpassa en kurva till försäljningshistorikdata. Denna metod kan vara användbar när en produkt är i övergången mellan stadierna i en livscykel. Till exempel, när en ny produkt flyttar från introduktion till tillväxtstadier, kan försäljningsutvecklingen accelereras. På grund av den andra ordningsperioden kan prognosen snabbt närma sig oändligheten eller släppa till noll (beroende på om koefficienten c är positiv eller negativ). Därför är denna metod endast användbar på kort sikt. Prognosspecifikationer: Formlerna finner a, b och c för att passa en kurva till exakt tre punkter. Du anger n i bearbetningsalternativet 7a, varvid antalet tidsperioder för data ackumuleras i var och en av de tre punkterna. I detta exempel n 3. Därför kombineras faktiska försäljningsdata för april till juni till första punkten, Q1. Juli till september läggs till för att skapa Q2 och oktober till december summa till Q3. Kurvan kommer att monteras på de tre värdena Q1, Q2 och Q3. Erforderlig försäljningshistorik: 3 n perioder för beräkning av prognosen plus antal tidsperioder som krävs för att utvärdera prognosprestanda (PBF). Antal perioder som ska inkluderas (behandlingsalternativ 7a) 3 i detta exempel Använd de föregående (3 n) månaderna i tre månaders block: Q1 (april-juni) 125 122 137 384 Q2 (jul-september) 129 140 131 400 Q3 Okt - dec) 114 119 137 370 Nästa steg innefattar att beräkna de tre koefficienterna a, b och c som ska användas i prognosformeln Y a bX cX2 (1) Q1 en bX cX2 (där X1) abc (2) Q2 En bx cX2 (där X2) en 2b 4c (3) Q3 en bX cX2 (där X3) a 3b 9c Lös de tre ekvationerna samtidigt för att hitta b, a och c: Subtrahera ekvation (1) från ekvation (2) Och lösa för b (2) - (1) Q2 - Q1 b 3c Ersätt denna ekvation för b till ekvation (3) (3) Q3 a 3 (Q2 - Q1) - 3c c Äntligen ersätt dessa ekvationer för a och b till Ekvation (1) Q3 - 3 (Q2 - Q1) (q2 - Q1) - 3c c Q1c (Q3 - Q2) (Q1 - Q2) 2 Beräkningsmetoden för andra grad beräknar a, b och c enligt följande: en Q3 - 3 (Q2-Q1) 370-3 (400-384) 322 c (Q3-Q2) (Q1-Q2) 2 (370-400) (384-400) 2 -23 b (Q2 - Q1) - 3c (400 - 384) - (3-23) 85 Y a bX cX2 322 85X (-23) X2 Januari till marsprognos (X4): (322 340 - 368) 3 2943 98 Per period april till juni prognos (X5): (322 425 - 575) 3 57 333 eller 57 per period juli till september prognos (X6): (322 510 - 828) 3 1,33 eller 1 per period oktober till december (X7) 595 - 11273 -70 A.9.2 Simulerad prognosberäkning Oktober, november och december 2004 Försäljning: Q1 (jan-mar) 360 Q2 (april-juni) 384 Q3 (jul-sep) 400 a 400-3 (384-360) 328 c (400 - 384) (360 - 384) 2 -4 b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 163 136 A.9.3 Procent av beräkningsberäkning POA (136 136 136) (114 119 137) 100 110,27 A.9.4 Genomsnittlig Absolut Avvikelse Beräkning MAD (136 - 114 136 - 119 136 - 137) 3 13,33 A.10 Metod 8 - Flexibel metod Den flexibla metoden (Procent över en månad före) liknar Metod 1, procent över fjolåret. Båda metoderna multiplicerar försäljningsdata från en tidigare tidsperiod av en användardefinierad faktor, och sedan projekterar det resultatet i framtiden. I Procenten över senaste årmetoden är projiceringen baserad på data från samma period föregående år. Den flexibla metoden lägger till förmågan att ange en annan tidsperiod än samma period förra året för att användas som underlag för beräkningarna. Multiplikationsfaktor. Ange till exempel 1,15 i bearbetningsalternativet 8b för att öka tidigare försäljningshistorikdata med 15. Basperiod. Till exempel kommer n 3 att göra att den första prognosen baseras på försäljningsdata i oktober 2005. Minimal försäljningshistorik: Användaren specificerade antal perioder tillbaka till basperioden plus antalet tidsperioder som krävs för att utvärdera prognosprestandan ( PBF). A.10.4 Genomsnittlig Absolut Avvikelse Beräkning MAD (148 - 114 161 - 119 151 - 137) 3 30 A.11 Metod 9 - Vägt Flyttande Medeltal Den Vägda Flyttande Genomsnittsmetoden (WMA) liknar Metod 4, Flyttande medelvärde (MA). Med det viktade rörliga genomsnittsvärdet kan du dock tilldela ojämna vikter till historiska data. Metoden beräknar ett vägt genomsnitt av den senaste försäljningshistoriken för att komma fram till en prognos på kort sikt. Nyare data tilldelas vanligtvis en större vikt än äldre data, så det gör WMA mer mottagligt för skift i försäljningsnivån. Men prognosfel och systematiska fel uppstår fortfarande när produktförsäljningshistoriken uppvisar stark trend eller säsongsmönster. Denna metod fungerar bättre för kortvariga prognoser för mogna produkter i stället för produkter i livscykelns tillväxt eller fördjupning. N antalet försäljningsperioder som ska användas i prognosberäkningen. Ange till exempel n 3 i bearbetningsalternativet 9a för att använda de senaste tre perioderna som utgångspunkt för projiceringen till nästa tidsperiod. Ett stort värde för n (som 12) kräver mer försäljningshistoria. Det resulterar i en stabil prognos, men kommer att vara långsam för att identifiera förändringar i försäljningsnivån. Å andra sidan kommer ett litet värde för n (som 3) att reagera snabbare på förändringar i försäljningsnivån, men prognosen kan fluktuera så mycket att produktionen inte kan svara på variationerna. Den vikt som tilldelas var och en av de historiska dataperioderna. De tilldelade vikterna måste uppgå till 1,00. Till exempel, när n 3, tilldela vikter på 0,6, 0,3 och 0,1, med den senaste data som tar emot största vikt. Minsta obligatoriska försäljningshistorik: n plus antal tidsperioder som krävs för att utvärdera prognosprestandan (PBF). MAD (133,5 - 114 121,7 - 119 118,7 - 137) 3 13,5 A.12 Metod 10 - Linjär utjämning Denna metod liknar metod 9, viktat rörande medelvärde (WMA). I stället för att godtyckligt tilldela vikter till historiska data används en formel för att tilldela vikter som minskar linjärt och summan till 1,00. Metoden beräknar sedan ett vägt genomsnitt av den senaste försäljningshistoriken för att komma fram till en prognos på kort sikt. Såsom är sant för alla linjära glidande medelprognostekniker förekommer prognosfel och systematiska fel när produktförsäljningshistoriken uppvisar stark trend eller säsongsmönster. Denna metod fungerar bättre för kortvariga prognoser för mogna produkter i stället för produkter i livscykelns tillväxt eller fördjupning. N antalet försäljningsperioder som ska användas i prognosberäkningen. Detta anges i bearbetningsalternativet 10a. Ange till exempel n 3 i bearbetningsalternativet 10b för att använda de senaste tre perioderna som utgångspunkt för projiceringen till nästa tidsperiod. Systemet kommer automatiskt att tilldela vikterna till historiska data som minskar linjärt och summerar till 1,00. Till exempel, när n 3, kommer systemet att tilldela vikter på 0.5, 0.3333 och 0.1, med den senaste data som tar emot största vikt. Minsta obligatoriska försäljningshistorik: n plus antal tidsperioder som krävs för att utvärdera prognosprestandan (PBF). A.12.1 Prognosberäkning Antal perioder som ska inkluderas i utjämningsgenomsnitt (behandlingsalternativ 10a) 3 i detta exempel Förhållande för en period före 3 (n2 n) 2 3 (32 3) 2 36 0,5 Förhållande för två perioder före 2 (n2 n ) 2 2 (32 3) 2 26 0,3333 .. Förhållande i tre perioder före 1 (n2 n) 2 1 (32 3) 2 16 0,166 .. Januari prognos: 137 0,5 119 13 114 16 127,16 eller 127 februari prognos: 127 0,5 137 13 119 16 129 Marsprognos: 129 0,5 127 13 137 16 129 666 eller 130 A.12.2 Simulerad prognosberäkning Oktober 2004 Försäljning 129 16 140 26 131 36 133,6666 Försäljning november 2004 140 16 131 26 114 36 124 december 2004 Försäljning 131 16 114 26 119 36 119.3333 A.12.3 Procent av beräkning av beräkningsgrad POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.12.4 Genomsnittlig Absolut Avvikelse Beräkning MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.13 Metod 11 - Exponentiell utjämning Denna metod liknar metod 10, linjär utjämning. Vid linjär utjämning tilldelar systemet vikter till de historiska data som avtar linjärt. Vid exponentiell utjämning tilldelar systemet vägar som exponentiellt sönderfall. Exponentiell utjämningsprognosekvation är: Prognos a (Tidigare verklig försäljning) (1-a) Föregående prognos Prognosen är ett vägt genomsnitt av den faktiska försäljningen från föregående period och prognosen från föregående period. A är vikten på den faktiska försäljningen för föregående period. (1 - a) är vikten applicerad på prognosen för föregående period. Giltiga värden för ett intervall från 0 till 1, och brukar falla mellan 0,1 och 0,4. Summan av vikterna är 1,00. A (1 - a) 1 Du bör ange ett värde för utjämningskonstanten, a. Om du inte tilldelar värden för utjämningskonstanten beräknar systemet ett antaget värde baserat på antalet perioder av försäljningshistorik som anges i bearbetningsalternativet 11a. En utjämningskonstanten som används vid beräkning av det jämnformade genomsnittet för den allmänna nivån eller storleken på försäljningen. Giltiga värden för ett intervall från 0 till 1. n sortimentet av försäljningshistorikdata som ingår i beräkningarna. Ett år med försäljningshistorikdata är i allmänhet tillräcklig för att uppskatta den allmänna försäljningsnivån. För detta exempel valdes ett litet värde för n (n 3) för att minska de manuella beräkningar som krävs för att verifiera resultaten. Exponentiell utjämning kan generera en prognos baserad på så lite som en historisk datapunkt. Minsta obligatoriska försäljningshistorik: n plus antal tidsperioder som krävs för att utvärdera prognosprestandan (PBF). A.13.1 Beräkning av prognos Antal perioder som ska inkluderas i utjämningsgenomsnitt (bearbetningsalternativ 11a) 3 och alfaktor (bearbetningsalternativ 11b) tom i detta exempel en faktor för äldsta försäljningsdata 2 (11) eller 1 när alfabet anges En faktor för den 2: e äldsta försäljningsdata 2 (12), eller alf när alpha anges en faktor för den 3: e äldsta försäljningsdata 2 (13), eller alf när alpha anges en faktor för den senaste försäljningsdata 2 (1n) , Eller alfa när alpha är specificerat november Sm. Avg. A (oktober faktiskt) (1 - a) oktober sm. Avg. 1 114 0 0 114 december Sm. Avg. A (november faktiskt) (1 - a) november sm. Avg. 23 119 13 114 117.3333 januari prognos a (december faktiskt) (1 - a) december sm. Avg. 24 137 24 117.3333 127.16665 eller 127 februari Prognos januari prognos 127 mars prognos januari prognos 127 A.13.2 simulerad prognosberäkning juli 2004 sm. Avg. 22 129 129 augusti Sm. Avg. 23 140 13 129 136.3333 September Sm. Avg. 24 131 24 136 3333 133,6666 oktober 2004 försäljning sep sm. Avg. 133.6666 augusti, 2004 Sm. Avg. 22 140 140 september Sm. Avg. 23 131 13 140 134 oktober Sm. Avg. 24 114 24 134 124 november 2004 försäljning sep sm. Avg. 124 september 2004 Sm. Avg. 22 131 131 oktober Sm. Avg. 23 114 13 131 119.6666 November Sm. Avg. 24 119 24 119,6666 119,3333 december 2004 försäljning sep sm. Avg. 119.3333 A.13.3 Procent av noggrannhetsberäkning POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.13.4 Genomsnittlig Absolut Avvikelse Beräkning MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.14 Metod 12 - Exponentiell utjämning Med trend och säsonglighet Denna metod liknar metod 11, exponentiell utjämning genom att ett jämnt medelvärde beräknas. Metod 12 innehåller emellertid också en term i prognosekvationen för att beräkna en jämn trend. Prognosen är sammansatt av ett jämnvärt medelvärde justerat för en linjär trend. När det anges i bearbetningsalternativet justeras prognosen också för säsongsmässigt. En utjämningskonstanten som används vid beräkning av det jämnformade genomsnittet för den allmänna nivån eller storleken på försäljningen. Giltiga värden för alfabetik från 0 till 1. b utjämningskonstanten som används vid beräkning av det jämnvärda medelvärdet för trendkomponenten i prognosen. Giltiga värden för betavärden från 0 till 1. Om ett säsongsindex används för prognos a och b är oberoende av varandra. De behöver inte lägga till 1.0. Minimikrav på försäljningshistorik: två år plus antal tidsperioder som krävs för att utvärdera prognosprestandan (PBF). Metod 12 använder två exponentiella utjämningsekvationer och ett enkelt medelvärde för att beräkna ett jämnt medelvärde, en jämn trend och en enkel genomsnittlig säsongsfaktor. A.14.1 Beräkning av prognoser A) En exponentiellt jämnad MAD (122,81 - 114 133,14 - 119 135,33 - 137) 3 8.2 A.15 Utvärdering av prognoserna Du kan välja prognosmetoder för att generera så många som tolv prognoser för varje produkt. Varje prognosmetod kommer sannolikt att skapa en något annorlunda projicering. När tusentals produkter prognostiseras är det opraktiskt att göra ett subjektivt beslut om vilka av prognoserna som ska användas i dina planer för var och en av produkterna. Systemet utvärderar automatiskt prestanda för vart och ett av de prognosmetoder som du väljer och för var och en av prognoserna. Du kan välja mellan två prestandakriterier, Mean Absolute Deviation (MAD) och Procent Accuracy (POA). MAD är ett mått på prognosfel. POA är ett mått på prognosförskjutning. Båda dessa prestandautvärderingstekniker kräver faktiska försäljningshistorikdata för en användarens specificerade tidsperiod. Den här perioden av senaste historiken kallas en uthållningsperiod eller perioder som passar bäst (PBF). För att mäta prestanda för en prognostiseringsmetod, använd prognosformlerna för att simulera en prognos för historisk uthållighetsperiod. Det kommer vanligtvis att finnas skillnader mellan faktiska försäljningsdata och den simulerade prognosen för hållbarhetsperioden. När flera prognosmetoder väljs utförs samma process för varje metod. Flera prognoser beräknas för hållbarhetsperioden och jämförs med den kända försäljningshistoriken för samma tidsperiod. Prognosmetoden som ger den bästa matchningen (bästa passformen) mellan prognosen och den faktiska försäljningen under hållbarhetsperioden rekommenderas för användning i dina planer. Denna rekommendation är specifik för varje produkt och kan ändras från en prognosproduktion till nästa. A.16 Mean Absolute Deviation (MAD) MAD är medelvärdet (eller genomsnittet) av de absoluta värdena (eller storleken) av avvikelserna (eller fel) mellan aktuell och prognosdata. MAD är ett mått på den genomsnittliga storleksgraden av fel som kan förväntas, med tanke på en prognosmetod och datahistorik. Eftersom absoluta värden används i beräkningen avbryter inte positiva fel negativa fel. När man jämför flera prognosmetoder har den som har den minsta MAD visat sig vara den mest tillförlitliga för den produkten under den perioden. När prognosen är opartisk och fel distribueras normalt finns det ett enkelt matematiskt förhållande mellan MAD och två andra gemensamma fördelningsförhållanden, standardavvikelse och Mean Squared Error: A.16.1 Procent av noggrannhet (POA) Procent of Accuracy (POA) Ett mått på prognosförskjutning. När prognoserna är konsekvent för höga ackumuleras lager och lagerkostnader stiger. När prognoserna konsekvent är två låga förbrukas lager och kundservice minskar. En prognos som är 10 enheter för låg, då 8 enheter för höga, 2 enheter för höga, skulle vara en objektiv prognos. Det positiva felet på 10 avbryts med negativa fel på 8 och 2. Fel Aktuell - Prognos När en produkt kan lagras i lager, och när prognosen är opartisk, kan en liten mängd säkerhetslager användas för att buffra felet. I denna situation är det inte så viktigt att eliminera prognosfel eftersom det är att skapa objektiva prognoser. Men inom serviceindustrin skulle ovanstående situation ses som tre fel. Tjänsten skulle vara underbemannad under den första perioden, sedan överbemannade för de kommande två perioderna. I tjänster är storleken på prognosfel vanligtvis viktigare än vad som är prognostiserad bias. Sammanfattningen över hållbarhetsperioden tillåter positiva fel att avbryta negativa fel. När den totala faktiska försäljningen överstiger den totala prognostiserade försäljningen är förhållandet större än 100. Det är naturligtvis omöjligt att vara mer än 100 korrekt. När en prognos är opartisk kommer POA-förhållandet att vara 100. Därför är det mer önskvärt att vara 95 exakt än att vara 110 exakt. POA-kriterierna väljer prognosmetoden som har ett POA-förhållande närmast 100. Scripting på denna sida förstärker innehållsnavigering, men ändrar inte innehållet på något sätt. OR-Notes är en serie inledande anteckningar om ämnen som faller under det breda Rubrik i verksamhetsforskningsområdet (OR). De användes ursprungligen av mig i en introduktionskurs eller kurs jag ger vid Imperial College. De är nu tillgängliga för användning av studenter och lärare som är intresserade av ELLER underkastade följande villkor. En fullständig lista över ämnena som finns i OR-Notes finns här. Prognosprognoser Prognosexempel 1996 UG-examen Efterfrågan på en produkt i vart och ett av de senaste fem månaderna visas nedan. Använd ett två månaders glidande medelvärde för att generera en prognos för efterfrågan i månad 6. Applicera exponentiell utjämning med en utjämningskonstant på 0,9 för att generera en prognos för efterfrågan på efterfrågan i månad 6. Vilken av dessa två prognoser föredrar du och varför De två månaderna rör sig Genomsnittet för månaderna två till fem ges av: Prognosen för månad sex är bara det rörliga genomsnittet för månaden före det vill säga det glidande genomsnittet för månad 5 m 5 2350. Tillämpning av exponentiell utjämning med en utjämningskonstant på 0,9 får vi: Som tidigare Prognosen för månad sex är bara genomsnittet för månad 5 M 5 2386 För att jämföra de två prognoserna beräknar vi den genomsnittliga kvadrerade avvikelsen (MSD). Om vi ​​gör det här finner vi att för det glidande medelvärdet MSD (15-19) sup2 (18-23) sup2 (21-24) sup23 16,67 och för det exponentiellt jämnade medlet med en utjämningskonstant på 0,9 MSD (13-17) sup2 (16,60 - 19) sup2 (18,76 - 23) sup2 (22,58 - 24) sup24 10,44 Totalt sett ser vi att exponentiell utjämning tycks ge de bästa månadens framåtprognoser eftersom den har en lägre MSD. Därför föredrar vi prognosen för 2386 som har producerats genom exponentiell utjämning. Prognosexempel 1994 UG-examen Tabellen nedan visar efterfrågan på en ny aftershave i en butik för var och en av de senaste 7 månaderna. Beräkna ett två månaders glidande medelvärde för månader två till sju. Vad är din prognos för efterfrågan i månad åtta. Applicera exponentiell utjämning med en utjämningskonstant på 0,1 för att få en prognos för efterfrågan i månad åtta. Vilket av de två prognoserna för månad åtta föredrar du och varför Butiksinnehavaren anser att kunderna byter till denna nya efterskärning från andra märken. Diskutera hur du kan modellera detta kopplingsbeteende och ange vilka data du behöver för att bekräfta om den här växlingen sker eller inte. Det tvåmånadersrörande genomsnittet för månaderna två till sju ges av: Prognosen för månad åtta är bara det rörliga genomsnittet för månaden före det vill säga det rörliga genomsnittet för månaden 7 m 7 46. Tillämpning av exponentiell utjämning med en utjämningskonstant av 0,1 vi Få: Som före prognosen för månad åtta är bara medeltalet för månaden 7 M 7 31,11 31 (eftersom vi inte kan ha fraktionerad efterfrågan). För att jämföra de två prognoserna beräknar vi den genomsnittliga kvadrerade avvikelsen (MSD). Om vi ​​gör det här finner vi det för glidande medelvärde och för exponentiellt jämnt medelvärde med en utjämningskonstant av 0,1 Övergripande då ser vi att det tvåmånaders glidande medeltalet tycks ge de bästa månadens framåtprognoser eftersom det har en lägre MSD. Därför föredrar vi prognosen på 46 som har producerats av två månaders glidande medelvärde. För att undersöka omkoppling skulle vi behöva använda en Markov-processmodell, där tillståndsmärken och vi skulle behöva initiala statsinformation och kundbyte sannolikheter (från undersökningar). Vi skulle behöva springa modellen på historiska data för att se om vi passar in mellan modellen och det historiska beteendet. Prognosexempel 1992 UG-examen Tabellen nedan visar efterfrågan på ett visst märke rakhyvel i en butik för var och en av de senaste nio månaderna. Beräkna ett tre månaders glidande medelvärde för tre till nio månader. Vad skulle vara din prognos för efterfrågan i månad tio Applicera exponentiell utjämning med en utjämningskonstant på 0,3 för att få en prognos för efterfrågan i månad tio. Vilken av de två prognoserna för tio månad föredrar du och varför Det tre månaders glidande genomsnittet för månaderna 3 till 9 ges av: Prognosen för månad 10 är bara det rörliga genomsnittet för månaden innan det vill säga det glidande genomsnittet för månaden 9 m 9 20,33. Därför (eftersom vi inte kan ha fraktsubjekt) är prognosen för månad 10 20. Tillämpning av exponentiell utjämning med en utjämningskonstant på 0,3 får vi: Som tidigare är prognosen för månad 10 bara genomsnittet för månaden 9 M 9 18,57 19 (som vi Kan inte ha fraktionerad efterfrågan). För att jämföra de två prognoserna beräknar vi den genomsnittliga kvadrerade avvikelsen (MSD). Om vi ​​gör det här finner vi det för glidande medelvärdet och för det exponentiellt jämnaste medlet med en utjämningskonstant på 0,3 Totalt ser vi att tre månaders glidande medelvärde tycks ge de bästa månadens framåtprognoser eftersom det har en lägre MSD. Därför föredrar vi prognosen på 20 som har producerats av tre månaders glidande medelvärde. Prognos exempel 1991 UG-examen Tabellen nedan visar efterfrågan på ett visst varumärke av faxapparat i ett varuhus under de senaste tolv månaderna. Beräkna fyra månaders glidande medelvärde för månaderna 4 till 12. Vad skulle vara din prognos för efterfrågan i månad 13 Applicera exponentiell utjämning med en utjämningskonstant på 0,2 för att få en prognos för efterfrågan i månad 13. Vilken av de två prognoserna för månaden 13 föredrar du och varför Vilka andra faktorer som inte beaktas i ovanstående beräkningar kan påverka efterfrågan på faxen i månad 13 Det fyra månaders glidande genomsnittet för månaderna 4 till 12 ges av: m 4 (23 19 15 12) 4 17,25 m 5 (27 23 19 15) 4 21 m 6 (30 27 23 19) 4 24,75 m 7 (32 30 27 23) 4 28 m 8 (33 32 30 27) 4 30,5 m 9 (37 33 32 30) 4 33 m 10 (41 37 33 32) 4 35,75 m 11 (49 41 37 33) 4 40 m 12 (58 49 41 37) 4 46,25 Prognosen för månad 13 är bara det rörliga genomsnittet för månaden före det vill säga det glidande genomsnittet För månad 12 m 12 46.25. Följaktligen (eftersom vi inte kan ha fraktionell efterfrågan) är prognosen för månad 13 46. Tillämpning av exponentiell utjämning med en utjämningskonstant på 0,2 får vi: Som tidigare är prognosen för månad 13 bara genomsnittet för månaden 12 M 12 38.618 39 (som vi Kan inte ha fraktionerad efterfrågan). För att jämföra de två prognoserna beräknar vi den genomsnittliga kvadrerade avvikelsen (MSD). Om vi ​​gör det här finner vi det för glidande medelvärde och för exponentiellt jämnt medelvärde med en utjämningskonstant på 0,2 Totalt ser vi att det fyra månaders glidande genomsnittet tycks ge de bästa månadens framåtprognoser eftersom det har en lägre MSD. Därför föredrar vi prognosen på 46 som har producerats av fyra månaders glidande medelvärde. Säsongsbetonad efterfrågan reklamprisförändringar, både detta märke och andra märken Allmän ekonomisk situation Ny teknik Prognos exempel 1989 UG-examen Tabellen nedan visar efterfrågan på ett visst varumärke av mikrovågsugn i ett varuhus i var och en av de senaste tolv månaderna. Beräkna ett sex månaders glidande medelvärde för varje månad. Vad skulle vara din prognos för efterfrågan i månad 13. Applicera exponentiell utjämning med en utjämningskonstant på 0,7 för att härleda en prognos för efterfrågan i månad 13. Vilken av de två prognoserna för månad 13 föredrar du och varför Nu kan vi inte beräkna en sex Månad flytta genomsnittet tills vi har minst 6 observationer - det kan vi bara beräkna ett så genomsnittligt från månad 6 framåt. Därför har vi: m 6 (34 32 30 29 31 27) 6 30,50 m 7 (36 34 32 30 29 31) 6 32,00 m 8 (35 36 34 32 30 29) 6 32,67 m 9 (37 35 36 34 32 30) 6 34,00 m 10 (39 37 35 36 34 32) 6 35,50 m 11 (40 39 37 35 36 34) 6 36,83 m 12 (42 40 39 37 35 36) 6 38,17 Prognosen för månad 13 är bara det rörliga genomsnittet för Månad före det vill säga det glidande medeltalet för månaden 12 m 12 38,17. Följaktligen (eftersom vi inte kan ha fraktionell efterfrågan) är prognosen för månad 13 38. Tillämpning av exponentiell utjämning med en utjämningskonstant på 0,7 får vi:

Comments